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Abstract. We interpret measurements of the Reynolds number dependence of the torque in Taylor-Couette
flow by Lewis and Swinney [Phys. Rev. E 59, 5457 (1999)] and of the pressure drop in pipe flow by Smits
and Zagarola [Phys. Fluids 10, 1045 (1998)] within the scaling theory of Grossmann and Lohse [J. Fluid
Mech. 407, 27 (2000)], developed in the context of thermal convection. The main idea is to split the energy
dissipation into contributions from a boundary layer and the turbulent bulk. This ansatz can account for
the observed scaling in both cases if it is assumed that the internal wind velocity Uy introduced through
the rotational or pressure forcing is related to the external (imposed) velocity U, by Uy, /U o Re® with
& = —0.051 and £ = —0.041 for the Taylor-Couette (U inner cylinder velocity) and pipe flow (U mean flow
velocity) case, respectively. In contrast to the Rayleigh-Bénard case the scaling exponents cannot (yet) be

derived from the dynamical equations.

PACS. 47.27.-1 Turbulent flows, convection, and heat transfer

1 Introduction

The relation between global flow properties and driving
forces is interesting from a fundamental point of view
and for upscaling from laboratory experiments to appli-
cations. Examples are the change in mean flow through
a pipe as a function of pressure drop, the dependence
of the heat transport as a function of temperature dif-
ference (Rayleigh-Benard (RB) flow), and the increase in
torque required to maintain a certain rotation speed in a
Taylor-Couette (TC) system. In all three systems the ef-
fects of the boundary layers are of prime importance but
the way in which they are dealt with differs. For pipe flow
the boundary effects are usually discussed in terms of the
Prandtl-van Karman theory [1] which assumes a logarith-
mic law for the profile!. For the connection between mean
flow and pressure drop it predicts an implicit logarithmic
relationship, the so called skin friction law [1], in reason-
able agreement with the experimental data.

On the other hand, Rayleigh-Bénard (RB) convection
has mainly been discussed in terms of algebraic relations:
In the last decade the power law relation Nu ~ Ra?/7 be-
tween the Nusselt number Nu and the Rayleigh number
Ra was thought to be an appropriate description of the
experimental data [3,4]. Recently, it has turned out that

& e-mail: lohse@tn.utwente.nl

! Barenblatt and coworkers however also succeeded to de-
scribe the data in terms of power laws [2].

the dependences are more involved [5-7]. On the theoret-
ical side, the analysis by Grossmann and Lohse [8] of the
different dominant dissipation mechanisms leads to a de-
tailed phase diagram for Rayleigh-Bénard convection that
is in good agreement with the latest [6,7] and older exper-
iments. In this theory the relations between Nu and Ra
are again algebraic.

For the Taylor-Couette system with rotating inner
cylinder and resting outer one a description of the rela-
tion between the dimensionless torque G and the Reynolds
number Re both in terms of a skin friction law and a pure
power law has been tried [9,10]. The dimensionless torque
G = T/pv?L and the Reynolds number Re = Qa(b—a)/v
are defined with 7' the torque, p the fluid density and v its
kinematic viscosity, L the length of the cylinders, {2 the
angular rotation rate, and b and a the radii of the outer
and inner cylinder, respectively. Lewis and Swinney’s anal-
ysis [9] of their experimental data clearly shows that a pure
power law G ~ Re® with a = 5/3 as suggested in refer-
ences [11,12] does not describe the data. A description in
terms of the skin friction law is in better agreement with
the data. However, it still is not fully satisfactory, either,
as the systematic drifts in their Figure 1 show.

It is our aim here to adopt Grossmann and Lohse’s
Rayleigh-Bénard theory to Taylor-Couette and pipe flow.
In contrast to the RB case, it is presently not possi-
ble to derive the scaling exponents fully from dynamical
equations. Instead, there will be one exponent that has



542

150

100 |

3/2+5¢&/2
G/Re¥*"

400 600

12+812

0 200
Re
(a)

800

The European Physical Journal B

0.02
_ 001 g ]
o
o
2 0.00
T
o
-0.01 t ]
-0.02 :
10°* 10° 10°
Re

Fig. 1. (a) Compensated plot G/Re?’/%%/2 vs. Re'/*T¢/% with € = —0.051. The points are Lewis and Swinney’s data [9], the
line the fit (8). Re varies in the range 10* through 9 x 10°. (b) Relative error (G — Gf)/G of the suggested combination of
power laws (8) with £ = —0.051 (open boxes) and relative error (f — fat)/f of the friction law fit (11) (filled circles).

to be and can be fitted consistently to data for both
systems.

We begin in Section 2 with a discussion of the theory
and the comparison to Lewis and Swinney’s [9] experimen-
tal data for TC flow. In Section 3 we will adopt it to pipe
flow for which precise high Re data on the pressure drop
were obtained by Smits’s group [13]. In Section 4 we com-
pare the quality of the data fit of this theory with that
of the standard skin friction law theory. Section 5 gives
conclusions.

2 Taylor-Couette flow

The basic idea [8] behind the analysis of the thermal con-
vection experiments is the splitting of the energy dissipa-
tion e into contributions from the boundary layer (BL)
and the bulk,

(1)

For the energy dissipation € in TC flow one strictly has [9]

€ = €BL T €bulk-

V2GS

This can be derived as usual by considering the energy
balance in a Navier-Stokes flow. In analogy to reference [8]
(see there for an extensive discussion) ey is estimated as

U3

b—a

€bulk ~ (3)
Here, Uy, is the typical velocity difference between the
turbulent and the laminar (linear) profile. It is a mea-
sure for the turbulent activity induced by the rotation
of the inner cylinder and it defines a Reynolds number

Rey = Uy (b — a)/v. In the laminar case Uy, = Rey, = 0,
and therefore ek = 0. Obviously, Uy, must not be con-
fused with the velocity U = 2ma{?2 of the inner cylinder or
the corresponding Reynolds number Re = 2a(b — a)/v.
The Reynolds number Re (or U) is imposed on the flow
whereas Rey (or Uy) is the response of the system. The
situation can be compared with RB convection where the
Rayleigh number is imposed on the cell whereas the re-
sponse of the system is the large scale wind of turbulence,
which again defines a wind Reynolds number Re,,. There-
fore, in analogy, also here we call Uy, the wind velocity.

It is this wind velocity which leads to the formation of
a boundary layer of thickness A,. As in reference [8] we
assume the BL to be of Blasius type [1],

Ay ~ (b—a)/v/ Rey. (4)
For very small Re,, the BL will of course not diverge but
saturate at a scale A, ~ (b— a) which introduces different
scaling relations [14], but in the present work we are not
interested in this very low Reynolds number regime.
With its thickness )\, as the relevant length scale we
estimate the energy dissipation in the BL as [§]
U2 A\,

W

b—a

U

()

EBL ~Y UV

Putting equations (2,5) together one obtains

(6)

where ¢; and ¢ are two unknown constants. The first term
is the BL contribution, the second one the bulk contribu-
tion.

The central question now is: How does Rey, depend on
Re? We do not know, but for large enough Re it seems
reasonable to assume a power law dependence,

GRe = clReEV/Q + CQRe;‘?V,

(7)
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Fig. 2. (a) Compensated plot p’/Re/?T58/2 ys. Re'/?+¢/2 with ¢
the fit (10). Re here varies between 3.16 x 10* and 3.53 x 107. (b

relative error

power laws (10) with £ = —0.041 (open boxes) and relative error

Therefore,

G = ¢; Re¥/?H58/2 | ¢y RT3, (8)
We perform a nonlinear fit of Lewis and Swinney’s data [9]
to equation (8), obtaining & = —0.051, ¢; = 10.5, and
c2 = 0.196. The best way to check the quality of the fit
(8) is to plot G/ Re®/2+58/2 ys. Rel/2+€/2 50 that according
to equation (8) a straight line should result. This indeed
is the case, as shown in Figure la. The quality of the fit
is underlined by the relative error shown in Figure 1b.

3 Pipe flow

Consider now pressure driven flow through a pipe of radius
R. The pressure gradient and the energy dissipation € per
volume are related by

Ap__

€= —Ty 9)
where T, =: U is the average of the z-velocity over the
cross section of the pipe, which defines the Reynolds num-
ber Re = 2RU/v. As for the TC flow we define the wind
velocity Uy, as the maximal difference between the tur-
bulent mean velocity profile and the laminar (parabolic)
one. This maximum will occur close to the walls. Uy, again
defines a wind Reynolds number Rey, = 2RU,,/v.

We split the energy dissipation in a boundary layer
part and a bulk part as in equation (1) and estimate both
contributions as above, equations (3,5), with b—a replaced
by R, and the thickness of the Blasius boundary layer be-
ing A\, ~ R/+/Rey. With this the equation for the dimen-
sionless pressure drop p’ = ApR3/(pv?) becomes

p' = ¢, Re¥/?5E/2 4 () Re¥H3¢, (10)
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where ¢} and ¢, are two unknown constants and & the
power law exponent of equation (7). Equation (10) is the
analog of equation (8) in the TC case.

In order to test equation (10) we consider the high
precision pressure drop data of Smits and Zagarola [13].
A nonlinear fit then results in £ = —0.041, ¢} = 0.226,
and ¢, = 0.00373. In Figure 2a we show p’/Re3/?5¢/2 ys.
Rel/?+¢/2 Tf equation (10) holds, a straight line should
result which is the case. Again the quality of the fit is
demonstrated with the relative errors in Figure 2b.

4 The skin friction law

Finally we would like to compare our description of the
data with the standard skin friction law [1]. Define the
friction coefficient f = G/ Re? for TC flow and f = p’/Re?
for pipe flow. One then has, in both cases [1,9,10],

1

v ctlg(Re\/f) + ¢

(11)

with two flow dependent constants ¢/ and ¢§ which can
be connected to the von Karman constant [9]. Employing
equation (11) one can indeed fit both data sets reasonably.
We do not show the fits as they have already been shown
elsewhere (see Fig. 4a of Ref. [9] for the TC case), but we
present the relative error (f — fa)/f in Figures la and 2b
and compare it with the relative errors of the combined
power laws equations (8) and (10), respectively. For both
TC and pipe flow the relative error of the friction law is
roughly of the same order as that of the fits (8) and (10),
respectively, maybe somewhat larger.
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5 Conclusions

The preceding analysis shows that the splitting of the
dissipation into a bulk and a boundary layer contribu-
tion as used in the Rayleigh-Bénard theory can also be
used to describe the Taylor-Couette flow [9] and the pipe
flow [13] data. However, in contrast to the RB case, only
one global balance equation is available, the one for the en-
ergy dissipation. Therefore, it is not possible to derive the
asymptotic scaling exponents for both the wind Reynolds
number and the dimensionless torque (dimensionless pres-
sure drop) in the TC case (pipe case). Instead, one scal-
ing exponent (£) must be fitted to the data. The ratio
Uy /U ~ Ref scales similarly in both cases, ¢ = —0.051
and £ = —0.041 for TC and pipe flow, respectively. The
relative error in both cases is less than one percent and
within this precision the data indicate really different ex-
ponents. The origin of this difference is unclear.

For shear flow, the strict upper bound for energy dis-
sipation is ¢ = €L/U? < 0.01087 for Re — oo [15,16].
All the Couette experiments clearly lie below this bound,
and even show a trend towards a scaling that is slower
than U?. When assuming the Kolmogorov length scale
as smallest length scale on which dissipation contributes,
Nicodemus et al. [17] could numerically show that around
Re = 10°—10° one has ¢, ~ Re~ 998, Kerswell assumes the
same cutoff and a certain background flow profile and finds
ce ~ Re™Y/7 for Re — oo [18]. Interestingly enough, the
exponents 3¢ = —0.12 (TC) and 3¢ = —0.15 (pipe) that
we find from the experimental data are very close to that
value. However, the scaling U, /U ~ Re® with negative ¢
implies that the wind does not increase as rapidly as the
external velocity with Re and that according to our defini-
tion of Uy, the relative difference between the laminar and
the mean turbulent velocity profiles vanishes. Given the
smallness of £ the Reynolds numbers at which this could
become significant are not experimentally accessible. But
the situation remains unsatisfactory and it clearly would
be highly desirable to calculate this exponent more rigor-
ously from the Navier-Stokes equations and to understand
the relation to the mean flow profile better.
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